
4108 October, 1964 EPAI-R 64-0720 M 5 

Journal of the NOV 18 7968 
ENGINEERING MECHANICS DIVISION 

Proceedings of the American Society of Civil Engineers 
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SYNOPSIS 

A thick-walled cylinder submitted to uniformly distributed internal and ex­
ternal pressures and to a uniformly distributed longitudinal load is considered. 

A graphical construction is established allowing the determination of whether 
the material does or does not remain elastic under this state of loads, or the 
selection of the value of one pressure with a view to maximizing another with­
out the cylinder undergoing plastic deformation. Three different constructions 
are given corresponding to the use of the criteria of Von Mises, Tresca, and 
of a linearized form of the intrinsic curve of Mohr-Caquot. Several remarks 
on the conditions and limits in the use of this method are included. 

INTRODUCTION 

Notation. - The letter symbols adopted for use in this paper are defined where 
they first appear and are listed alphabetically in the Appendix. 

Note.-Discussion open until MarchI, 1965. To extend the closing date one month, a 
written request must be filed with the Executive Secretary, ASCE. This paper is part 
of the copyrighted Journal of the Engineering Mechanics Division, Proceedings of the 
American Society of Civil Engineers, Vol. 90, No. EM5, October, 1964. 

1 Engineer, Laboratoire des Hautes Pres siers, Centre National De La Recherche 
Scientifique, Bellevue, France. 

2 Director, Laboratoire des Hautes Pressiers, Centre National De La Recherche 
Scientifique, Bellevue, France. 
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A hollow cylinder of circular cross-section, Fig. 1, is submitted to internal, 
Pi, external, Pe and longitudinal, PI uniformly distributed pressures, and the 
limiting relations, i.e., the limit within which the vessel undergoes no plastic 
deformation between these quantities, are established. These relations will 
be referred to as elastic loading conditions and will be established for three 
criteria of plasticity:-the criteria of Von Mises, 3 of Mohr-Caquot4 and of 
Tresca. 5 

FIG. 1 

The well-known formulas of Lame6 give the radial, or, circumferential, 
(18, and longitudinal, (1z. stresses as functions of Pi.. Pe and PI in the following 
form: 
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3 Von Mises, R., "Mechanik der festen KOrper im plastisch deformablen Zustand," 
GOttinger Nachrichten, 1913. 

4 Caquot, A., "nefinition du domaine elastique dans les corps isotropes,· Proceedings, 
4th Coogress of lnternatl. Applied Mechanics, Cambridge, Mass., 1935, p. 24. 

5 Tresca, H. E., "Memoire sur l'ecoulement des corps solides," Memoires presentes 
par divers savants, Vol. 18, 1868, pp. 773-799. 

6 Lame, G., etClapeyron, B. P ., "Memoires sur l'equilibreinterieur des corps solides 
homogenes,· Memoires pres entes par divers savants, 1833. 
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is the ratio of the external radius to the internal radius of the cylinder. By 
substituting Eqs. 1, 2, and 3 in the corresponding criterion, the desired con­
ditions of elastic loading are obtained. 

ELASTIC LOADING FOR VON MISES' CRITERION 

The substitution of Eqs. 1, 2, and 3 in the relation of Von Mises, given by 

yields the condition of elastic loading corresponding to this criterion 

in which 0"0 is the elastic limit of the material for pure tension. The left side 
of Eq. 6 is a maximum for r = r i> and demonstrates that plastic deformations 
will occur, either first at the internal diameter of the cylinder whatever the 
relative values of Pi and Pe, or simultaneously in the entire thickness of the 
cylinder for the particular case Pi = Pe = 0 and PI = 2: 0"0. 

Now, consider the case in which a plastic deformation is possible. The re­
lation, r = ri is written, the inequality 7 in Eq. 6 becomes equality. On the 
pressure space Pi' PI, Pe, the surface described by this equality is an elliptic 
cylinder 7 with its axis pointing in the direction (1, 1, 1). The elliptic cross­
section varies both in dimension and orientation, with k. This surface has mean­
ing only as long as Pi and Pe are positive, while 

L 
PI = - (2 2) 

1r r - r. 
e 1 

( 7) 

may be positive, negative or vanishing, depending on the value and sign ( tension 
or compression) of the longitudinal load L. 

This surface is studied in the system of orthonormal axes V, W, Z, with V 
and W being respectively coincident with the minor and major axes of the ellipse 

7 Epain, R., "Contribution a l'etude de la resistance des cylindres epais elasto­
plastiques," thesis presented to the University of Paris, at Paris, France, in 1961, in 
partial fulfilment of the requirements for the degree of Doctor of Philosophy. 
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of the normal cross section, while Z, parallel to the generating line of the 
elliptic cylinder, is inclined at equal angles to Pi' Pt, Pe. 

The dimensions of the ellipse of the normal cross section are given by 

minor axis 0"0 (M - 1) 

2 ~4 M2 + ~ 7 M4 + 10 M3 - M + 1 - 2 M + 1 

( 8) 

and 

major axis 0"0 (M - 1) 

2 
~ 4 M2 - ~ 7 M4 + 10 M3 - M + 1 - 2 M + 1 

(9) 

while its orientation, relative to the projections pi, pi, P~ of the axes Pi> PI> Pe 

onto the plane, 1T, perpendicular to Z, is determined by 

tan 1/J = ......... (lOa) 

in which 

1/J = angle V, P~ ................ (lOb) 
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. . . . .. (10!) 

4 M2 - M + 1 ± ~ 7 M4 + 10 M3 - 2 M + 1 ... (lOg) 

and 

M = k 2 
.................. (lOh) 

For k = 1, corresponding to a hypothetical cylinder of zero thickness, the 
ellipse is reduced to a line (zero surface) along pi, For k = 0() corresponding 

(v) 
k =00 

FIG. 2 

to a cylinder of infinite thickness or to a capillary tube, the ellipse has the di-
mens ions indicated in Fig. 2. -+ 

If, in the pressure space, the load is represented by the vector, OP, with 
components Pi, PI, Pe' the following remarks can be made: 

1. Plastic flow is only possible if P lies on the elliptic cylinder; 
2. since hydrostatic load is represented by a vector parallel to Z, only the 

component of OF in the plane, fT, is necessary for determining whether the 
material does or does not remain elastic; and 
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3. the ellipse corresponding to k = <Xl havinga finite dimension confirm the 
known result that a finite state of load is sufficient to create a plastic defor­
mation in a cylinder of infinite thickness. 

The second statement leads to the establishment of a graphic method per­
mitting the resolution of the problems relative to elastic loading. On a first 
graph, A, three equidistant axes p~ , PI', p' are traced, as well as the axes, V, 

1 e 
for different values of K. For the same values a series of graphs, B, are 
traced on transparent paper representing the corresponding ellipses. The 
number of these graphs is limited both by the allowed interpolations and the 
fact that k = 4 constitutes a limiting value in practice. Finally a new simpli-

w 

FIG. 3 

fication is obtained by scaling the design to !372 and on letting aO = 1. Then the 

graphs are superimposed, A on B, making the axes V coincide, and tracing the 
--+-

projection of OP on the plane 1f whose components on p~ , PI', p' are respectively 
1 e 

p/aO. p/aO' Pe/ aO' The cylinder does or does not remain elastic according 
to whether P falls inside or on the ellipse. 

With this method it is possible to find graphically, for a given value of one 
of the three variables, the possible maximum of one of the other two and the 
corresponding value of the third. Some of these results are well known. For 
example, it is shown in Fig. 3, how for a given value of Pe' PI could be deter­
mined so that Pi is a maximum. Beginning as before, OC = p/aO and t. are 
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traced parallel to pi and tangent to the ellipse. It is then deduced that PI = aO 

CD and Pi = aO DP. 
The determination of the extrema can be done by this method, thus producing 

the following results: 
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ELASTIC LOADING FOR THE CRITERION OF THE 
INTRINSIC CURVE OF MOHR-CAQUOT 

For simplification, a linearized intrinsic curve is used, obtained by drawing 
the right lines tangents to the circles of diameters, aO and ac' in which aO and 
(]c are the absolute values of the elastic limits for pure tension and pure 
compression. 

There is plastic flow at a point in the wall of the cylinder if the local values 
of the constraints are such that the Mohr circle constructed by the major aM 
and the minor am stressed is tangent to or cuts these lines and the necessary 
condition that the cylinder remains elastic is expressed by the inequality 
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0'0 
0' -0' - < 0' 

M mO'O 
(12) 

c 

Accordingto the relative magnitudes of the principal stresses given by Eqs. 
1, 2, and 3, Eq. 12 can be written in six different ways. Just as for the criterion 
of Von Mises, it can be shown that plastic flow begins at the internal diameter. 
Then, at the limit, and with r = ri, these inequalities become equalities and 
present six planes in the space Pi, Pe, Pl' 

Il' I w 

v 

FIG. 4 

In the new coordinate system V, W, Z (where the axis Z coincides with the 
line Pi = Pe = PI while W is at the intersection of the plane formed by the co­
ordinates Pi and Pe and the plane 1T perpendicular to Z and passing through the 
origin) the contours formed by their traces on the planes perpendicular to the 
line Pi = PI = Pe are represented in Fig. 4. It can be seen that the slopes of 
these traces vary with the ratios O'o/O'c and k (except for the lines 3 and 3' ). 
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Furthermore, the i r ordinate intersections are function of 0"0 / 0" C and in 
particular, of 

This signifies that, contrary to the criterion of Von Mises, the extent of the 
elastic domain in the present case is no longer independent of the hydrostatic 
component of the load vector; the elastic domain enlarges as Z increase, the 
lines forming the contour remaining parallel to themselves. Moreover, it 
should be noted that, with the system of axes V, W, Z, the V-axis coincides 
with the projection pi of PIon the plane 'IT. 

The graphic method described in the preceding paragraph is also valid in 
this case. It is slightly complicated because the dimensions of the elastic zone 

1'-'. 
L 

FIG . 5 

~' • 

,,: 
t 

must be calculated as a function of Z, but, conversely, it is considerably sim­
plified because the axes V and Ware fixed relative to the axes p~, PI', p' . 

1 e 

ELASTIC LOADING FOR TRESCA'S CRITERION 

Letting 0"0 = o"c' the oblique lines of the precedent intrinsic curve become 
parallel and the criterion of Mohr-Caquot reduces to that of Tresca. In the 
space Pi' PI, Pe' the criterion of Tresca is represented by an irregular hexa­
gonal prism inscribed in the elliptic cylinder of Von Mises. The magnitude of 
the elastic domain is once again, as in the case of Von Mises, independent of 
the hydrostatic component of the load vector. The intersection of this prism 
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with the plane 1T gives the contour of the elastic domain. Fig. 5 shows that this 
contour can be easily traced, the other half of the hexagon being symmetric 
with respect to the origin. For k = 3, side 1 of the hexagon almost coincides 
with the perpendicular to p' (the position of 1 in the figure corresponding to e 
k = (0). This shows that increasing k above the value 3 adds only a small gain 
to the elastic loading. For k = 1, the hexagon is reduced to the line pi (zero 
surface) . 

The study of the maxima uncovers the following well-known result: For a 
given Pe there exists, contrary to the criterion of Von Mises, an infinite num­
ber of values of PI for which Pi is maximum and equal to 

This result is obtained because the tangent of the contour drawn parallel to 
pi coincides with the side 2 of the hexagon. The extremities of the load vectors 
corresponding to the cases of cylinders open, closed, and in plane strain con­
dition, end respectively at the points a, b, and c of Fig. 5. 

CONDITIONS OF APPLICATION AND LIMITS OF 
VALIDITY OF THESE METHODS 

Using these methods, it is implicitly assumed that the loads increase pro­
portionally to the same parameter. This condition is automatically satisfied 
for the cases of open and closed cylinders as well as for a cylinder in plane 
strain condition. However, it is no longer true for the case of shrink fits, in 
which Pe is first applied followed then by Pi. The method presented herein is, 
nevertheless, valid on the condition that it is used in two steps. 

The following remarks can be made concerning the limits of validity of these 
methods. For a hydrostatic load, Ph = Pi = PI = Pe' of large magnitude, the 
stress-strain relation should no longer be linear, thus making Hooke's law 
invalid. The work of Bridgman8 on the compressibility of pure iron shows 
that, at 12,000 atmospheres, there exists small divergence from linearity. 

Furthermore, if the deformations become large, the relations between the 
components of the deformation tensor and the spatial derivatives of the com­
ponents of the displacements become quadratic. At this point, the Lame equa­
tions that are formed from the linear forms at these relations are no longer 
valid, and the relations of elastic loading, which are derived from them, must 
be entirely reconsidered. Thus, even if the criterion of plasticity used, as in 
the case for the criteria of Von Mises, Mohr-Caquot and Tresca, implies the 
condition that a hydrostatic constraint does not cause plastic deformation, it 
does not automatically result thata hydrostatic load, Ph = Pi = PI = Pe' pro­
tects the cylinder from all plastic flow. 

Conversely, if the loads, though large, are not isotropic (Pi f PI f Pe) it 
can be considered that a plastic law governs the deformation beyond the elastic 

8 Bridgman, P. W., "The Physics of High Pressure,' 2nd Edition, Bell and Sons, 
London, England, 1949, p. 154. 
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regime of Hooke's law. There is no phase of a nonlinear law elasticity and 
consequently, the relations of elastic loading shown remain valid. 

CONCLUSIONS 

The graphical method described allows the resolution of problems relative 
to elastic loading in a more varied manner than that of the calculations. It 
allows a better examination of the variables that can be worked on to bring back 
the end of the vectorut-tuad-on, or at the interior, of the elastic boundary. 
Furthermore, using the Tresca criterion makes the graphical construction 
remarkably easy. 

APPENDIX. - NOTATION 

The following letter symbols have been adopted for use in this paper: 

k 
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M 

Pe 

Ph 

Pi 

PI 

r, e, Z 

r 
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r . 
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r 
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, 
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longitudinal load; 

k2. , 
external pressure; 

hydrostatic pressure; 

internal pressure; 

L -
(r! -

2) ; r . 
1 

projections of Pi' PI' P e onto the plane 1T; 

cylindrical coordinates; 

external radius; 

internal radius; 

minor axiS of the ellipse; 

components used to define the angle, I/!; 
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W 

WI' W2, W3 
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Zo 
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(JO 

(J 
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(J 
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Xl' X2 
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major axis of the ellipse; 

components used to define the angle, l/J j 

axes pointing in the direction (1, 1, 1); 

1 
= .J3 (Pi + PI + Pe); 

= elastic limit for pure compression; 

major stress; 

minor stress; 

elastic limit for pure tension; 

radial stress; 

longitudinal stress; 

circumferential stress; 

components used to define the angle, l/J j 

angle V,P~; and 

= load vector. 
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